Systematic study and niche differentiation of the genus Aporocactus (Hylocereeae, Cactoideae, Cactaceae)

keywords: cpDNA phylogeny, epiphytic cacti, niche differentiation, rat-tail cactus, species delimitation


Background: Aporocactus is an epiphytic or saxicolous genus that is endemic to Mexico and has a distribution restricted to cloud forests and pine-oak forests. As with many cacti, Aporocactus presents taxonomic conflicts, especially regarding species delimitation, since five species in this genus have been described and accepted by some authors, while others accept only two species.

Questions: How many species comprise Aporocactus? What are their relationships? Do these species show differences in their climatic preferences?

Studied species: The five putative species in Aporocactus were investigated.

Study site and dates: This study was conducted in 2015 and 2016. The collection sites were in Hidalgo, Puebla, Querétaro, Veracruz, and Oaxaca states, Mexico.

Methods: In this study, phylogenetic analyses were performed using chloroplast DNA markers from different Aporocactus populations and related genera, and ecological niche modeling techniques were also employed.

Results: The phylogenetic analyses indicated that Aporocactus is composed of only two species: A. flagelliformis and A. martianus. Additionally, the phylogenetic analyses corroborated that Aporocactus is an early diverging group related to Weberocereus and Selenicereus. Finally, niche modeling and niche identity testing indicated that the niches of the two species of Aporocactus are significantly differentiated and niches are more different than would be expected by chance.

Conclusions: Despite being a genus with only two species, Aporocactus represents a useful model for investigating such topics as the ecology of pollination, genetic populations, and flower development to characterize the evolution of these specialized cacti.


Download data is not yet available.
Systematic study and niche differentiation of the genus <em>Aporocactus</em> (Hylocereeae, Cactoideae, Cactaceae)


Anderson EF. 2001. The Cactus family. Portland: Timber Press. ISBN: 0881924989

Archibold OW. 1995. Ecology of World Vegetation. London, UK: Chapman & Hall. ISBN 978-94-011-0009-0

Arias S, Terrazas T, Arreola-Nava HJ, Vázquez-Sánchez M, Cameron KM. 2005. Phylogenetic relationships in Peniocereus (Cactaceae) inferred from plastid DNA sequence data. Journal of Plant Research 118: 317-328. DOI:

Bauer R. 2003. A synopsis of the tribe Hylocereeae F. Buxb. Cactaceae Systematics Initiative 17: 3-63

Bravo-Hollis H. 1978. Las Cactáceas de México. Vol. I. México DF: Universidad Nacional Autónoma de México. ISBN: 9683617581

Britton NL, Rose JN. 1920. The Cactaceae. Vol. 2. Washington: The Carnegie Institution of Washington.

Cuervo-Robayo AP, Téllez-Valdés O, Gómez-Albores M, Venegas-Barrera CS, Manjarrez J, Martínez-Meyer E. 2014. An update of high-resolution monthly climate surfaces for Mexico. International Journal of Climatology 34: 2427-2437. DOI:

Cruz MA, Arias S, Terrazas T. 2016. Molecular phylogeny and taxonomy of the genus Disocactus (Cactaceae), based on the DNA sequences of six chloroplast markers. Willdenowia 46: 145-164. DOI:

Darriba D, Taboada GL, Doallo R, Posada D. 2014. jModelTest 2.0: more models, new heuristics and parallel computing. Nature Methods 9: 772. DOI:

De Candolle AP. 1829. Revue de la Famille des Cactées. Mémoires du Muséum d'Histoire Naturelle. Paris 17: 3-119.

De Queiroz K. 2007. Species concepts and species delimitation. Systematic Biology 56: 879-886. DOI:

Foster P. 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55: 73-106. DOI:

Gutiérrez-Ortega JS, Salinas-Rodríguez MM, Ito T, Pérez-Farrera MA, Vovides AP, Martínez JF, Molina-Freaner F, Hernández-López A, Kawaguchi L, Nagano AJ, Kajita T, Watano Y, Tsuchimatsu T, Takahashi Y, Murakami M. 2020. Niche conservatism promotes speciation in cycads: the case of Dioon merolae (Zamiaceae) in Mexico. New Phytologist 6: 1872-1884. DOI:

Guzmán U, Arias S, Dávila P. 2007. Catálogo de cactáceas mexicanas. México, DF: Universidad Nacional Autónoma de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. ISBN: 970-9000-20-9

Hall TA. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.

Hernández-Hernández T, Hernández MH, De-Nova JA, Puente R, Eguiarte LE, Magallón S. 2011. Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). American Journal of Botany 98: 44-61. DOI:

Hernández-Ruíz J, Herrera-Cabrera EB, Delgado-Alvarado A, Salazar-Rojas VM, Bustamante-Gonzalez A, Campos-Contreras JE, Ramirez-Juarez J. 2016. Potential distribution and geographic characteristics of wild populations of Vanilla planifolia (Orchidaceae) Oaxaca, Mexico. Revista de Biologia Tropical. 64: 235-246. DOI:

Huelsenbeck JP, Roquist F. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754-755. DOI:

Hunt DR. 1989. Notes on Selenicereus (A.Berger) Britton & Rose and Aporocactus Lemaire (Cactaceae-Hylocereinae). Bradleya 7: 89-96. DOI:

Hunt DR, Taylor NP. 1986. The genera of Cactaceae: Towards a new consensus. Bradleya 4: 65-78. DOI:

Hunt DR, Taylor NP, Charles G. 2006. The new cactus lexicon. International Cactaceae Systematics Group, eds. Vol. I. Melbourne Port:, DH Books. ISBN: 9780953813445

Hutchinson GE. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415-427. DOI:

Kass JM, Muscarella R, Galante PJ, Bohl CL, Pinilla?Buitrago GE, Boria RA, Soley?Guardia M, Anderson RP. 2021. ENMeval 2.0: redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution. DOI:

Korotkova N, Borsch T, Arias S. 2017. A phylogenetic framework for the Hylocereeae (Cactaceae) and implications for the circumscription of the genera. Phytotaxa 327: 1-46. DOI:

Korotkova N, Zabel L, Quandt D, Barthlott W. 2010. A phylogenetic analysis of Pfeiffera and the reinstatement of Lymanbensonia as an independently evolved lineage of epiphytic Cactaceae within a new tribe Lymanbensonieae. Willdenowia 40: 151-172. DOI:

Lemaire C. 1860. Aporocactus. L'illustration horticole 7: 67-68. (accessed November 1, 2020)

Lemaire C. 1861. Cleistocactus. L'illustration horticole 8: 35. (accessed November 1, 2020)

Lemaire C. 1868. Lés Cactées. Paris: Librairie Agricole de la Maison Rustique.

Linneo C. 1753. Species Plantarum. Vol 1. London. (accessed October 1, 2020)

Maddison WP, Maddison DR. 2016. Mesquite: a modular system for evolutionary analysis. Version 3.10

Martínez-Quezada DM, Arias S, Korotkova N, Terrazas T. 2020. The phylogenetic significance of the stem morpho?anatomy in the Hylocereeae (Cactoideae, Cactaceae). Plant Systematics and Evolution 306: 8. DOI:

Menzel A, Sparks T. 2006. Temperature and plant development: phenology and seasonality. In: Morison JI, Morecroft MD, eds. Plant Growth and Climate Change. UK: University of Essex Colchester: Blackwell Publishing Ltd. DOI:

Morrone J, Escalante T, Rodríguez-Tapia G. 2017. Mexican biogeographic provinces: Map and shapefiles. Zootaxa 4277: 277. DOI:

Mosco A. 2017. Niche characteristics and potential distribution of Thelocactus species, a Mexican genus of globular cacti. bioRxiv. DOI:

Münkemüller T, Boucher FC, Thuiller W, Lavergne S. 2015. Phylogenetic niche conservatism – common pitfalls and ways forward. Functional Ecology 29: 627-639. DOI:

Muscarella R, Galante PJ, Soley?Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP. 2014. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution 5: 1198-1205. DOI:

Ortiz-Medrano A, Scantlebury DP, Vázquez-Lobo A, Mastretta-Yanes A, Piñero D. 2016. Morphological and niche divergence of pinyon pines. Ecology and Evolution 6: 2886-2896. DOI:

Peterson AT, Soberón J, Sánchez Cordero V. 1999. Conservatism of ecological niches in evolutionary time. Science 285: 1265-1267. DOI:

Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. Opening the black box: an open source release of Maxent. Ecography 40: 887-893. DOI:

Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling 190: 231-259. DOI:

Pyron RA, Costa GC, Patten MA, Burbrink FT. 2015. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biological Reviews 90: 1248-1262. DOI:

Rambaut A, Drummond AJ, Xie D, Baele G and Suchard MA. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901-904. DOI:

Rodríguez SR, Morales-Barrera W, Layer P, González-Mercado E. 2010. A quaternary monogenetic volcanic field in the Xalapa region, eastern Trans-Mexican volcanic belt: geology, distribution and morphology of the volcanic vents. Journal of Volcanology and Geothermal Research 197: 1-4. DOI:

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61: 539-542. DOI:

Ruiz-Jiménez CA, Téllez-Valdés O, Luna-Vega I. 2012. Clasificación de los bosques mesófilos de montaña de México: afinidades de la flora. Revista Mexicana de Biodiversidad 83: 1110-1144. DOI:

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rzedowski J. 1990. Vegetación Potencial. IV.8.2. Atlas Nacional de México. Vol II. Escala 1:4000000. México: Instituto de Geografía, Universidad Nacional Autónoma de México.

Sánchez D, Arias S, Terrazas T. 2014. Phylogenetic relationships in Echinocereus (Cactaceae, Cactoideae). Systematic Botany 39:1183-1196. DOI:

Sánchez D, Terrazas T, Grego-Valencia D, Arias S. 2017. Phylogeny in Echinocereus (Cactaceae) based on combined morphological and molecular evidence: taxonomic implications. Systematics and Biodiversity 16:28-44. DOI:

Sang T, Crawford D, Stuessy TF. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany 84: 1120-1136. DOI:

Shaw J, Lickey EB, Schilling EE, Small RL. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94: 275-288. DOI:

Soberón J, Arroyo-Peña B. 2017. Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. Plos One 12: p.e0175138. DOI:

Soberón J, Peterson AT. 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2: 1-10. DOI:

Suárez-Mota ME, Villaseñor JL, López-Mata L. 2015. Ecological niche similarity between congeneric Mexican plant species. Plant Ecology and Evolution 148: 318-328. DOI:

Taberlet P, Gielly L, Pautou G, Bouvet J. 1991. Universal primers for amplification of the three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105-1109. DOI:

Tapia HJ, Bárcenas-Aguello ML, Terrazas T, Arias S. 2017. Phylogeny and circumscription of Cephalocereus (Cactaceae) based on molecular and morphological evidence. Plant Systematics and Evolution 42: 1-15. DOI:

Tate JA, Simpson BB. 2003. Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Systematic Botany 28:723-737. DOI:

Taylor N, Hunt D. 1991. Notes on miscellaneous genera of Cactaceae. Bradleya 9: 86-88.

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680. DOI:

Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusbe WH, Li DZ, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ, Smith GF. 2018. International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) Regnum Vegetabile 159. Glashütten: Koeltz Botanical Books. ISBN: 3-906166-48-1

Vargas-Luna MD, Hernández-Ledesma P, Majure LC, Puente-Marínez R, Hernández-Macías HM, Bácernas-Luna RT. 2018. Splitting Echinocactus: morphological and molecular evidence support the recognition of Homalocephala as a distinct genus in the Cacteae. PhytoKeys 111: 31. DOI:

Warren D, Glor R, Turelli M. 2008. Environmental Niche Equivalency versus Conservatism: Quantitative Approaches to Niche Evolution. Evolution. International Journal of Organic Evolution 62: 2868-83. DOI:

Warren DL, Glor RE, Turelli M. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607-611. DOI:

Zotz G. 2016. Plants on plants-the biology of vascular epiphytes. Switzerland: Springer International Publishing. ISBN: 3319818473

Zuccarini JG. 1832. Flora, oder, Botanische Zeitun: welche Recensionen, Abhandlungen, Aufsätze, Neuigkeiten und Nachrichten, die Botanik betreffend, enthält. Vol 15. Regensburg : Die Gesellschaft. pp. 66-67. (accessed November 3, 2020)

How to Cite
Rosas-Reinhold , I., Sánchez, D., & Arias, S. (2022). Systematic study and niche differentiation of the genus Aporocactus (Hylocereeae, Cactoideae, Cactaceae). Botanical Sciences, 100(2), 423-445.