Pollination success in three tropical dry forest orchid species from Mexico: insights from floral display, visitation rates, and flower micromorphology

  • Yazmín Miranda-Molina Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, C.P. 04510, Mexico http://orcid.org/0000-0001-8705-7197
  • Edgar J. González Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, C.P. 04510, Mexico. https://orcid.org/0000-0001-9113-1070
  • Judith Márquez-Guzmán Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, C.P. 04510, Mexico https://orcid.org/0000-0002-0463-3775
  • Jorge A. Meave Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, C.P. 04510, Mexico https://orcid.org/0000-0002-6241-8803
  • Eduardo A. Pérez García Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México http://orcid.org/0000-0002-4136-4500
keywords: Barkeria whartoniana, Clowesia dodsoniana, Cyrtopodium macrobulbon, Euglossine bees, floral display, flower micromorphology

Abstract

Background: Despite long-lasting efforts to disentangle the drivers of orchid pollination, pollination success in tropical dry forest orchids remains largely unknown.

Questions and hypothesis: How successful are pollination in three tropical dry forest orchids? How is pollination influenced by floral display and floral rewards (as suggested by floral micromorphology)? We hypothesized a positive effect of floral display on pollinia removal and deposition rates.

Studied species: Barkeria whartoniana (C. Schweinf.) Soto Arenas, Clowesia dodsoniana E. Aguirre, and Cyrtopodium macrobulbon (La Llave & Lex.) G.A. Romero & Carnevali.

Study site and dates: Nizanda (Oaxaca), Mexico; flowering periods of 2013 and 2014.

Methods: We calculated pollinia removal and deposition rates, identified floral visitors and analyzed flower microstructure to search for structures potentially producing rewards. Floral display was measured through number of open flowers, and number and length of inflorescences, and its effect on pollination success was assessed through linear modeling.

Results: Pollinia removal rates were higher than deposition rates, and floral display was related to pollination success in C. dodsoniana only. Visitation rates were low for the three species and most visitors were not true pollinators. The three species possess potentially secreting structures, but for B. whartoniana and C. macrobulbon these rewards are likely part of the pollinator deception mechanism.

Conclusions: The generalized low pollination success implies the need for high population densities of both interacting parts. We emphasize the need for integrated evaluations of different aspects of the plant-pollinator interaction.

Downloads

Download data is not yet available.
Pollination success in three tropical dry forest orchid species from Mexico: insights from floral display, visitation rates, and flower micromorphology

References

Ackerman JD. 1981. Pollination biology of Calypso bulbosa var. occidentalis (Orchidaceae): a food-deception system. Madroño 28: 101-110. http://www.jstor.org/stable/41424311

Ackerman JD. 1984. Pollination of tropical and temperate orchids. In: Tan KW. ed. Proceedings of the 11th World Orchid Conference. Miami: American Orchid Society, pp. 98-101. ISBN-13: 978-9994115112

Ackerman JD. 1986. Mechanisms and evolution of food-deceptive pollination systems in orchids. Lindleyana 1: 108-113.

Ackerman JD. 1989. Limitations to sexual reproduction in Encyclia krugii (Orchidaceae). Systematic Botany 14: 101-109. DOI: https://doi.org/10.2307/2419054

Aguirre-León E. 1979. Ecología de la Polinización en el Género Clowesia (Orchidaceae) en México. BSc Thesis. Universidad Nacional Autónoma de México.

Aragón S, Ackerman JD. 2004. Does flower color variation matter in deception pollinated Psychilis monensis (Orchidaceae)? Oecologia 138: 405-413. DOI: https://doi.org/10.1007/s00442-003-1443-9

Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1-48. DOI: https://doi.org/10.18637/jss.v067.i01

Bawa KS. 1990. Plant-pollinator interactions in tropical rain forest. Annual Review of Ecology and Systematics 21: 399-422. DOI: https://doi.org/10.1146/annurev.es.21.110190.002151

Burnham KP, Anderson DR. 2002. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. New York, New York: Springer. ISBN: 978-0-387-22456-5

Brennan MJ, Cobb HD, Knabb RD. 2010. Observations of Gulf of Tehuantepec gap wind events from QuikSCAT: an updated event climatology and operational model evaluation. Weather and Forecasting 25: 646-658. DOI: https://doi.org/10.1175/2009WAF2222324.1

Brys R, Jacquemyn H, Hermy M. 2008. Pollination efficiency and reproductive patterns in relation to local plant density, population size, and floral display in the rewarding Listera ovata (Orchidaceae). Botanical Journal of the Linnean Society 157: 713-721. DOI: https://doi.org/10.1111/j.1095-8339.2008.00830.x

Calvo RN. 1990. Inflorescence size and fruit distribution among individuals in three orchid species. American Journal of Botany 77: 1378-1381. DOI: https://doi.org/10.1002/j.1537-2197.1990.tb11389.x

Castillo RA, Cordero C, Domínguez CA. 2002. Are reward polymorphisms subject to frequency-and density-dependent selection? Evidence from a monoecious species pollinated by deceit. Journal of Evolutionary Biology 15: 544-552. DOI: https://doi.org/10.1046/j.1420-9101.2002.00425.x

Chase MW, Hills HG. 1992. Orchid phylogeny, flower sexuality, and fragrance-seeking: evidence from variation in chloroplast DNA among subtribes Catasetinae and Cyrtopodiinae. BioScience 42: 43-49. DOI: https://doi.org/10.2307/1311627

Coombs G, Peter CI, Johnson SD. 2009. A test for Allee effects in the self-incompatible wasp-pollinated milkweed Gomphocarpus physocarpus. Austral Ecology 34: 688-697. DOI: https://doi.org/10.1111/j.1442-9993.2009.01976.x

Cozzolino S, Widmer A. 2005. Orchid diversity: an evolutionary consequence of deception? Trends in Ecology and Evolution 20: 487-494. DOI: https://doi.org/10.1016/j.tree.2005.06.004

Dafni A. 1984. Mimicry and deception in pollination. Annual Review of Ecology and Systematics 15: 259-278. DOI: https://doi.org/10.1146/annurev.es.15.110184.001355

Damon AA, Cruz-López L. 2006. Fragrance in relation to pollination of Oncidium sphacelatum and Trichocentrum oerstedii (Orchidaceae) in the Soconusco region of Chiapas, Mexico. Selbyana 27: 186-194.

Davies KL, Stpiczy?ska M. 2006. Labellar micromorphology of Bifrenariinae Dressler (Orchidaceae). Annals of Botany 98: 1215-1231. DOI: https://doi.org/10.1093/aob/mcl204

Davies KL, Stpiczy?ska M, Gregg A. 2005. Nectar-secreting floral stomata in Maxillaria anceps Ames & C. Schweinf. (Orchidaceae). Annals of Botany 96: 217-227. DOI: https://doi.org/10.1093/aob/mci182

Davies KL, Stpiczy?ska M, Turner MP. 2006. A rudimentary labellar speculum in Cymbidium lowianum (Rchb.f.) Rchb.f. and Cymbidium devonianum Paxton (Orchidaceae). Annals of Botany 97: 975-984. DOI: https://doi.org/10.1093/aob/mcl065

Davies KL, Turner MP. 2004. Pseudopollen in Dendrobium unicum Seidenf. (Orchidaceae): reward or deception? Annals of Botany 94: 129-132. DOI: https://doi.org/10.1093/aob/mch118

Dressler RL. 1981. The Orchids: Natural History and Classification. Cambridge, Massachusetts: Harvard University Press. ISBN: 0-674-87525-7

Dressler RL. 1982. Biology of the orchid bees (Euglossini). Annual Review of Ecology and Systematics 13: 373-394. DOI: https://doi.org/10.1146/annurev.es.13.110182.002105

Dutra D, Kane ME, Adams CR, Richardson L. 2009. Reproductive biology of Cyrtopodium punctatum in situ: implications for conservation of an endangered Florida orchid. Plant Species Biology 24: 92-103. DOI: https://doi.org/10.1111/j.1442-1984.2009.00242.x

Eltz T, Whitten WM, Roubik DW, Linsenmair KE. 1999. Fragrance collection, storage, and accumulation by individual male orchid bees. Journal of Chemical Ecology 25: 157-176. DOI: https://doi.org/10.1023/A:1020897302355

Emeterio-Lara A, García-Franco JG, Hernández-Apolinar M, Mora-Herrera ME, Toledo-Hernández VH, Valencia-Díaz S, Flores-Palacios A. 2018. Endogamy costs and reproductive biology of Laelia autumnalis, an endemic orchid of Mexico. Plant Ecology 219: 1423-1434. DOI: https://doi.org/10.1007/s11258-018-0891-6

Fahn A. 1988. Secretory tissues in vascular plants. New Phytologist 108: 229-257. DOI: https://doi.org/10.1111/j.1469-8137.1988.tb04159.x

Ferdy JB, Gouyon PH, Moret J, Godelle B. 1998. Pollinator behavior and deceptive pollination: learning process and floral evolution. American Naturalist 152: 696-705. DOI: https://doi.org/10.1086/286200

Flach A, Dondon RC, Singer RB, Koehler S, Amaral MCE, Marsaioli AJ. 2004. The chemistry of pollination in selected Brazilian Maxillariinae orchids: floral rewards and fragrance. Journal of Chemical Ecology 30: 1045-1056. DOI: https://doi.org/10.1023/B:JOEC.0000028466.50392.ed

Franken EP, Pansarin LM, Pansarin ER. 2016. Osmophore diversity in the Catasetum cristatum alliance (Orchidaceae: Catasetinae). Lankesteriana 16: 317-327. DOI: https://doi.org/10.15517/lank.v16i3.26649

González-Varo JP, Biesmeijer JC, Bommarco R, Potts SG, Schweiger O, Smith HG, Steffan-Dewenter I, Szentgyörgyi H, Woyciechowski M, Vilà M. 2013. Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology & Evolution 28: 524-530. DOI: https://doi.org/10.1016/j.tree.2013.05.008

Jaramillo OA, Borja MA. 2004. Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case. Renewable Energy 29: 1613-1630. DOI: https://doi.org/10.1016/j.renene.2004.02.001

Jersáková J, Johnson SD, Kindlmann P. 2006. Mechanisms and evolution of deceptive pollination in orchids. Biological Reviews 81: 219-235. DOI: https://doi.org/10.1017/s1464793105006986

Johnson SD, Neal PR, Harder LD. 2005. Pollen fates and the limits on male reproductive success in an orchid population. Biological Journal of the Linnean Society 86: 175-190. DOI: https://doi.org/10.1111/j.1095-8312.2005.00541.x

Johnson SD, Peter CI, Nilsson LA, Ågren J. 2003. Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plants. Ecology 84: 2919-2927. DOI: https://doi.org/10.1890/02-0471

Kaye TN, Bahm MA, Thorpe AS, Gray EC, Pfingsten I, Waddell C. 2019. Population extinctions driven by climate change, population size, and time since observation may make rare species databases inaccurate. PloS One 14: e0210378. DOI: https://doi.org/10.1371/journal.pone.0210378

Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15: 259-263. DOI: https://doi.org/10.1127/0941-2948/2006/0130

Li P, Huang BQ, Pemberton RW, Luo YB, Cheng J. 2011. Floral display influences male and female reproductive success of the deceptive orchid Phaius delavayi. Plant Systematics and Evolution 296: 21-27. DOI: https://doi.org/10.1007/s00606-011-0473-8

Maciel AA, Cardoso JC, Oliveira PE. 2020. On the low reproductive success of two Cyrtopodium species (Orchidaceae: Cyrtopodiinae): The relative roles of biotic and abiotic pollination. Plant Species Biology 35: 49-58. DOI: https://doi.org/10.1111/1442-1984.12260

Maldonado-Romo AF. 2014. Fenología Foliar y Reproductiva de la Comunidad Arbórea del Bosque Tropical Caducifolio en Nizanda, Oaxaca, México. BSc Thesis. Universidad Nacional Autónoma de México.

Michener CD. 1974. The Social Behavior of the Bees: A Comparative Study. Cambridge, Massachusetts: Harvard University Press. ISBN: 0-674-81175-5

Mickeliunas L, Pansarin ER, Sazima M. 2006. Biologia floral, melitofilia e influência de besouros Curculionidae no sucesso reprodutivo de Grobya amherstiae Lindl. (Orchidaceae: Cyrtopodiinae). Revista Brasileira de Botânica 29: 251-258. DOI: https://doi.org/10.1590/S0100-84042006000200006

Montalvo AM, Ackerman JD. 1987. Limitations to fruit production in Ionopsis utricularioides. Biotropica 19: 24-31. DOI: https://doi.org/10.2307/2388456

Neiland MR, Wilcock CC. 1998. Fruit set, nectar reward and rarity in the Orchidaceae. American Journal of Botany 85: 1657-1671. DOI: https://doi.org/10.2307/2446499

Nepi M, Pacini E, Nencini C, Collavoli E, Franchi GG. 2003. Variability of nectar production and composition in Linaria vulgaris (L.) Mill. (Scrophulariaceae). Plant Systematics and Evolution 238: 109-118. DOI: https://doi.org/10.1007/s00606-002-0275-0

Nilsson LA. 1992. Orchid pollination biology. Trends in Ecology and Evolution 7: 255-259. DOI: https://doi.org/10.1016/0169-5347(92)90170-G

Nilsson LA, Rabakonandrianina E, Pettersson B. 1992. Exact tracking of pollen transfer and mating in plants. Nature 360: 666-667. DOI: https://doi.org/10.1038/360666a0

O’Connell LM, Johnston MO. 1998. Male and female pollination success in a deceptive orchid, a selection study. Ecology 79: 1246-1260. DOI: https://doi.org/10.1890/0012-9658(1998)079[1246:MAFPSI]2.0.CO;2

Pansarin LM, Castro MM, Sazima M. 2009. Osmophore and elaiophores of Grobya amherstiae (Catasetinae, Orchidaceae) and their relation to pollination. Botanical Journal of the Linnean Society 159: 408-415. DOI:

https://doi.org/10.1111/j.1095-8339.2009.00953.x

Pansarin LM, Pansarin ER, Sazima M. 2008. Reproductive biology of Cyrtopodium polyphyllum (Orchidaceae): a Cyrtopodiinae pollinated by deceit. Plant Biology 10: 650-659. DOI: https://doi.org/10.1111/j.1438-8677.2008.00060.x

Parra-Tabla V, Vargas CF. 2007. Flowering synchrony and floral display size affect pollination success in a deceit-pollinated tropical orchid. Acta Oecologica 32: 26-35. DOI: https://doi.org/10.1016/j.actao.2007.02.002

Pemberton RW. 2008. Pollination of the ornamental orchid Oncidium sphacelatum by the naturalized oil-collecting bee (Centris nitida) in Florida. Selbyana 29: 87-91. https://journals.flvc.org/selbyana/article/view/121215

Pemberton RW, Liu H. 2008. Potential of invasive and native solitary specialist bee pollinators to help restore the rare cowhorn orchid (Cyrtopodium punctatum) in Florida. Biological Conservation 141: 1758-1764. DOI: https://doi.org/10.1016/j.biocon.2008.04.016

Pérez-García EA, Meave JA, Villaseñor JL, Gallardo-Cruz JA, Lebrija-Trejos EE. 2010. Vegetation heterogeneity and life-strategy diversity in the flora of the heterogeneous landscape of Nizanda, Oaxaca, Mexico. Folia Geobotanica 45: 143-161. DOI: https://doi.org/10.1007/s12224-010-9064-7

Phillips RD, Reiter N, Peakall R. 2020. Orchid conservation: from theory to practice. Annals of Botany 126: 345-362. DOI: https://doi.org/10.1093/aob/mcaa093

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (accessed June 17, 2020).

Razem FA, Davis AR. 1999. Anatomical and ultrastructural changes of the floral nectary of Pisum sativum L. during flower development. Protoplasma 206: 57-72. DOI: https://doi.org/10.1007/BF01279253

Roberts DL. 2003. Pollination biology: the role of sexual reproduction in orchid conservation. In: Dixon KW, Kell SP, Barrett RL, Cribb PJ, eds. Orchid Conservation. Kota Kinabalu, Sabah: Natural History Publications. pp. 113-136. ISBN: 9838120782

Rodríguez-Robles JA, Meléndez EJ, Ackerman JD. 1992. Effects of display size, flowering phenology, and nectar availability on effective visitation frequencies in Comparettia falcata (Orchidaceae). American Journal of Botany 79: 1009-1017. DOI: https://doi.org/10.1002/j.1537-2197.1992.tb13690.x

Roubik DW. 2000. Deceptive orchids with Meliponini as pollinators. Plant Systematics and Evolution 222: 271-279. DOI: https://doi.org/10.1007/BF00984106

Rudall JP. 2007. Anatomy of Flowering Plants: An Introduction to Structure and Development. Cambridge: Cambridge University Press. ISBN: 9780521692458

Sabat AM, Ackerman JD. 1996. Fruit set in a deceptive orchid: the effect of flowering phenology, display size, and local floral abundance. American Journal of Botany 83: 1181-1186. DOI: https://doi.org/10.1002/j.1537-2197.1996.tb13899.x

Schemske DW. 1980. Evolution of floral display in the orchid Brassavola nodosa. Evolution 34: 489-493. DOI: https://doi.org/10.1111/j.1558-5646.1980.tb04838.x

Schiestl FP. 2005. On the success of a swindle: pollination by deception in orchids. Naturwissenschaften 92: 255-264. DOI: https://doi.org/10.1007/s00114-005-0636-y

Schweiger O, Biesmeijer JC, Bommarco R, Hickler T, Hulme PE, Klotz S, Kühn I, Moora M, Nielsen A, Ohlemüller R, Petanidou T, Potts SG, Pyšek P, Stout JC, Sykes MT, Tscheulin T, Vilà M, Walther G-R, Westphal C, Winter M, Zobel M, Settele J. 2010. Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews 85: 777-795. DOI: https://doi.org/10.1111/j.1469-185X.2010.00125.x

Scopece G, Schiestl FP, Cozzolino S. 2015. Pollen transfer efficiency and its effect on inflorescence size in deceptive pollination strategies. Plant Biology 17: 545-550. DOI: https://doi.org/10.1111/plb.12224

Smithson A, Gigord LDB. 2001. Are there fitness advantages in being a rewardless orchid? Reward supplementation experiments with Barlia robertiana. Proceedings of the Royal Society of London Series B 268: 1-7. DOI: https://doi.org/10.1098/rspb.2001.1705

Smithson A, Macnair MR. 1997. Negative frequency-dependent selection by pollinators on artificial flowers without rewards. Evolution 51: 715-723. DOI: https://doi.org/10.1111/j.1558-5646.1997.tb03655.x

Sonkoly J, Vojtkó AE, Tökölyi J, Török P, Sramkó G, Illyés Z, Molnár VA. 2016. Higher seed number compensates for lower fruit set in deceptive orchids. Journal of Ecology 104: 343-351. DOI: https://doi.org/10.1111/1365-2745.12511

Stebbins GL. 1970. Adaptive radiation of reproductive characteristics in angiosperms: pollination mechanisms. Annual Review of Ecology and Systematics 1: 307-326. DOI: https://doi.org/10.1146/annurev.es.01.110170.001515

Stpiczy?ska M, Davies KL. 2008. Elaiophore structure and oil secretion in flowers of Oncidium trulliferum Lindl. and Ornithophora radicans (Rchb.f.) Garay & Pabst (Oncidiinae: Orchidaceae). Annals of Botany 101: 375-384. DOI: https://doi.org/10.1093/aob/mcm297

Stpiczy?ska M, Davies KL, Gregg A. 2004. Nectary structure and nectar secretion in Maxillaria coccinea L.O. Williams ex Hodge (Orchidaceae). Annals of Botany 93: 87-95. DOI: https://doi.org/10.1093/aob/mch008

Sun HQ, Cheng J, Zhang FM, Luo YB, Ge S. 2009. Reproductive success of non-rewarding Cypripedium japonicum benefits from low spatial dispersion pattern and asynchronous flowering. Annals of Botany 103: 1227-1237. DOI: https://doi.org/10.1093/aob/mcp066

Telepova-Texier M. 2009. Acampe hulae Telepova (Orchidaceae), una nouvelle espècie du Cambodge et du Laos. Adansonia 31: 267-272. DOI: https://doi.org/10.5252/a2009n2a3

Tremblay RL. 1992. Trends in the pollination ecology of the Orchidaceae: evolution and systematics. Canadian Journal of Botany 70: 642-650. DOI: https://doi.org/10.1139/b92-083

Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN. 2005. Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biological Journal of the Linnean Society 84: 1-54. DOI: https://doi.org/10.1111/j.1095-8312.2004.00400.x

Vale Á, Rojas D, Álvarez JC, Navarro L. 2011. Breeding system and factors limiting fruit production in the nectarless orchid Broughtonia lindenii. Plant Biology 13: 51-61. DOI: https://doi.org/10.1111/j.1438-8677.2010.00366.x

Valencia-Nieto B. 2012. Ontogenia Floral Comparada entre Microepidendrum subulatifolium, Barkeria uniflora, Caularthron bilamellatum y Epidendrum ciliare (Orchidaceae, Laeliinae) en el Complejo de la Alianza Epidendrum. MSc Thesis. Universidad Nacional Autónoma de México.

van der Pijl L, Dodson CH. 1966. Orchid Flowers: Their Pollination and Evolution. Coral Gables, Florida: University of Miami Press. ISBN: 087024-069-2

Warford NM, Harrell B. 1996. Clowesia dodsoniana Aguirre L. Its history, pollination and osmophores. Orchid Digest 60: 174-180.

Widmer A, Cozzolino S, Pellegrino G, Soliva M, Dafni A. 2000. Molecular analysis of orchid pollinaria and pollinaria remains found on insects. Molecular Ecology 9: 1911-1914. DOI: https://doi.org/10.1046/j.1365-294x.2000.01103.x

Wilcock C, Neiland R. 2002. Pollination failure in plants: why it happens and when it matters. Trends in Plant Science 7: 270-277. DOI: https://doi.org/10.1016/S1360-1385(02)02258-6

Willmer PG. 2011. Pollination and Floral Ecology. Princeton, New Jersey: Princeton University Press. ISBN: 9780691128610

Zimmerman JK, Aide TM. 1989. Patterns of fruit production in a Neotropical orchid: pollinator vs. resource limitation. American Journal of Botany 76: 67-73. DOI: https://doi.org/10.1002/j.1537-2197.1989.tb11286.x

Published
2021-08-04
How to Cite
Miranda-Molina, Y. M., González, E. J., Márquez-Guzmán, J., Meave, J., & Pérez García , E. A. (2021). Pollination success in three tropical dry forest orchid species from Mexico: insights from floral display, visitation rates, and flower micromorphology. Botanical Sciences, 99(4), 771-790. https://doi.org/10.17129/botsci.2785
Section
ECOLOGY / ECOLOGÍA