Floral development of the myrmecophytic Acacia cornigera (Leguminosae)

keywords: ant-acacia, ant guard-pollinator conflict, organogenesis, mutualism, stomata


Background: The Neotropical ant-acacias show morphological variations in their vegetative characteristics as a consequence of their relationship with ants. However, there is no information regarding whether floral organs have also undergone any modification that prevents resident ants from approaching the inflorescences in anthesis.

Questions: Are the patterns of floral development affected by the relationship with ants? Is there any floral organ or structure involved in avoiding the presence of ants during the flowering period? At what stage of development do these modifications arise, if at all?

Studied species: Acacia cornigera (L.) Willd.

Study site: Santiago Pinotepa Nacional, Oaxaca and Los Tuxtlas, Veracruz. March and May 2015.

Methods: Dissections of inflorescences in every developmental stage from two populations, were examined using scanning electron microscopy.

Results: The inception patterns of the calyx (irregular), corolla (simultaneous), androecium (acropetally in alternate sectors) and gynoecium (precocious) agree with previous reports for non-myrmecophyic species of the Acacia genus. In mature stages, the presence of stomata is characteristic of bracts and petals.

Conclusions: Floral development is not affected by ant-acacia interactions; however, the occurrence of stomata on bracts and petals could be an important feature indicative of secretory structures to resolve the conflict of interest between ants and pollinators during the flowering period. In this sense, a new approach based on histological analyzes will be necessary in flowers of A. cornigera.


Download data is not yet available.
Floral development of the myrmecophytic <em>Acacia cornigera</em> (Leguminosae)


Buttrose MS, Grant WJR, Sedgley M. 1981. Floral development in Acacia pycnantha Benth. Australian Journal of Botany 29: 385-395. DOI: https://doi.org/10.1071/BT9810385

Endress PK. 2006. Angiosperm floral evolution: morphological developmental framework. In: Soltis DE, Leebens-Mack JH, Soltis PS, eds. Advances in Botanical Research. Incorporating Advances in Plant Pathology. Developmental genetics of the flower. Vol. 44. California: Academic Press, pp. 1-61. Hardcover ISBN: 9780120059447 eISBN:9780080464633

Federle W, Maschwitz U, Fiala B, Rieder M, Hölldobler B. 1997. Slippery ant plants and skillful climbers: selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euphorbiaceae). Oecologia 112: 217-224. DOI: https://doi.org/10.1007/s004420050303

Ghazoul J. 2001. Can floral repellents pre-empt potential ant-plant conflicts? Ecology Letters 4: 295-299. DOI: https://doi.org/10.1046/j.1461-0248.2001.00229.x

Gómez-Acevedo SL, Magallón S, Rico-Arce L. 2007. Floral development in three species of Acacia (Leguminosae, Mimosoideae). Australian Journal of Botany 55: 30-41. DOI: https://doi.org/10.1071/BT05155

Gómez-Acevedo SL, Rico-Arce L, Delgado-Salinas A, Magallón S, Eguiarte LE. 2010. Neotropical mutualism between Acacia and Pseudomyrmex: Phylogeny and divergence times. Molecular Phylogenetics and Evolution 56: 393-408. DOI: https://doi.org/10.1016/j.ympev.2010.03.018

Huchelmann A, Boutry M, Hachez C. 2017. Plant glandular trichomes: Natural cell factories of high biotechnological interest. Plant Physiology 175: 6-22. DOI: https://doi.org/10.1104/pp.17.00727

Iwamoto A, Bull-Hereñu K. 2018. Floral development: re-evaluation of its importance. Journal of Plant Research 131: 365-355. DOI: https://doi.org/10.1007/s10265-018-1034-9

Janzen DH. 1974. Swollen-thorn acacias of Central America. Smithsonian Contributions to Botany 13: 1-131. DOI: https://doi.org/10.5479/si.0081024X.13

Junker RR, Blüthgen N. 2010. Floral scents repel facultative flower visitors, but attract obligate ones. Annals of Botany 105: 777-782. DOI: https://doi.org/10.1093/aob/mcq045

Kyalangalilwa B, Boatwrigth JS, Daru BH, Maurin O, van der Bank M. 2013. Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Botanical Journal of the Linnean Society 172: 500-523. DOI: https://doi.org/10.1111/boj.12047

Mansano VF, Tucker SC, Tozzi AMGA. 2002. Floral ontogeny of Lecointea, Zollernia, Exostyles, and Harleyodendron (Leguminosae: Papilionoideae: Swartzieae s.l.). American Journal of Botany 89: 1553-1569. DOI: https://doi.org/10.3732/ajb.89.10.1553

Marinho CR, Souza CD, Barros TC, Teixeira SP. 2014. Scent glands in legume flowers. Plant Biology 16: 215-226. DOI: https://doi.org/10.1111/plb.12000

Miller JS, Diggle PK. 2003. Diversification of andromonoecy in Solanum section Lasiocarpa (Solanaceae): the roles of phenotypic plasticity and architecture. American Journal of Botany 90: 707-715. DOI: https://doi.org/10.3732/ajb.90.5.707

Miller JS, Diggle PK. 2007. Correlated evolution of fruit size and sexual expression in andromonoecious Solanum sections Acanthophora and Lasiocarpa (Solanaceae). American Journal of Botany 94: 1706-1715. DOI: https://doi.org/10.3732/ajb.94.10.1706

Miller JT, Seigler DS. 2012. Evolutionary and taxonomic relationships of Acacia s.l. (Leguminosae: Mimosoideae). Australian Sstematic Botany 25: 217-224. DOI: https://doi.org/10.1071/SB11042

Murphy DJ. 2008. A review of the classification of Acacia (Leguminosae, Mimosoideae). Muelleria 26: 10-26.

Nicklen EF, Wagner D. 2006. Conflict resolution in an ant-plant interaction: Acacia constricta traits reduce ant costs to reproduction. Oecologia 148: 81-87. DOI: https://doi.org/ https://doi.org/10.1007/s00442-006-0359-6

Paulino JV, Mansano VF, Teixeira SP. 2013. Elucidating the unusual features of Swartzia dipetala (Fabaceae). Botanical Journal of the Linnean Society 173: 303-320. DOI: https://doi.org/10.1111/boj.12089

Paulino JV, Mansano VF, Prenner G, Teixeira SP. 2017. High developmental lability in the perianth of Inga (Fabales, Fabaceae): a Neotropical woody rosid with gamopetalous corolla. Botanical Journal of the Linnean Society 183 146-161. DOI: https://doi.org/10.1111/boj.12496

Pedersoli GD, Texeira SP. 2016. Floral development of Parkia multijuga and Stryphnodendron adstringens, two andromonoecious mimosoid trees (Leguminosae). International Journal of Plant Sciences 177: 60-75. DOI: https://doi.org/10.1086/683845

Prenner G. 2011. Floral ontogeny of Acacia celastrifolia: an enigmatic mimosoid legume with pronounced polyandry and multiple carpels. In: Wanntorp L, Ronse de Craene LP, eds. Flowers on the Tree of Life. Cambridge: Cambridge University Press, pp. 256-278. DOI: https://doi.org/10.1017/CBO9781139013321.011

Raine NE, Willmer P, Stone GN. 2002. Spatial structuring and floral avoidance behavior prevent ant-pollinator conflict in a Mexican ant-acacia. Ecology 83: 3086-3096. DOI: https://doi.org/10.1890/0012-9658(2002)083[3086:SSAFAB]2.0.CO;2

Ramírez-Domenech JI, Tucker SC. 1990. Comparative ontogeny of the perianth in mimosoid legumes. American Journal of Botany 77: 624-635. DOI: https://doi.org/10.2307/2444809

Reuther K, Cla?en-Bockhoff R. 2013. Andromonoecy and developmental plasticity in Chaerophyllum bulbosum (Apiaceae-Apioideae). Annals of Botany 112: 1495-1503. DOI: https://doi.org/10.1093/aob/mct073

Rico-Arce ML. 2007. American Species of Acacia. Mexico, DF: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). ISBN: 9709000470

Ronse de Craene L. 2018. Understanding the role of floral development in the evolution of angiosperm flowers: clarifications from a historical and physico-dynamic perspective. Journal of Plant Research 131: 367-393. DOI: https://doi.org/10.1007/s10265-018-1021-1

Scut CP, Vandenbussche M. 2014. Current trends and future directions in flower development research. Annals of Botany 114: 1399-2014. DOI: https://doi.org/10.1093/aob/mcu224

Seigler DS, Ebinger JE. 1995. Taxonomic revision of the ant-acacias (Fabaceae, Mimosoideae, Acacia, series Gummiferae) of the New World. Annals of the Missouri Botanical Garden 82: 117-138. DOI: https://doi.org/10.2307/2399983

Stone GN, Raine NE, Prescott M, Willmer PG. 2003. Pollination ecology of acacias (Fabaceae, Mimosoideae). Australian Systematic Botany 16: 103-118. DOI: https://doi.org/10.1071/SB02024

Tölke ED, Capelli NV, Pastori T, Alencar AC, Cole TCH, Demarco D. 2019. Diversity of floral glands and their secretions in pollinator attraction. In: Mérillon JM, Ramawat KG, eds. Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Cham, Switzerland: Springer International Publishing pp 1-46. DOI: https://doi.org/10.1007/978-3-319-76887-8_48-3

Tucker SC. 1992. The development basis for sexual expression in Ceratonia siliqua (Leguminosae: Caesalpinioideae: Cassieae). American Journal of Botany 79: 318-327. DOI: https://doi.org/10.2307/2445022

Willmer PG, Nuttman CV, Raine NE, Stone GN, Pattrick JG, Henson K, Stillman P, McIlroy L, Potts SG, Knudsen JT. 2009. Floral volatiles controlling ant behaviour. Functional Ecology 23: 888-900. DOI: https://doi.org/10.1111/j.1365-2435.2009.01632.x

Willmer PG, Stone GN. 1997. How aggressive ant-guards assist seed-set in Acacia flowers. Nature 388: 165-167. DOI: https://www.nature.com/articles/40610

How to Cite
Gómez-Acevedo, S. L. (2021). Floral development of the myrmecophytic Acacia cornigera (Leguminosae). Botanical Sciences, 99(3), 588-598. https://doi.org/10.17129/botsci.2776