Effect of canopy management in the water status of cacao (Theobroma cacao) and the microclimate within the crop area

keywords: Leaf water potential, microenvironment, sap flow, shade management, water use


Background: Cacao is an umbrophile species and therefore the handling of shade by producers can cause a microclimatic modification that influences the physiology of the plant.

Questions: Can canopy management influence the microclimate of the crop area and the water content of cacao?

Species of study: Theobroma cacao L. (Malvaceae).

Study site: Comalcalco, Tabasco, Mexico; dry and rainy season 2018.

Methods: Three sites were selected with an open canopy (OC) and three with a closed canopy (CC), where we determined air temperature and humidity, soil temperature, vapor pressure deficit, photosynthetically active radiation, soil water potential and leaf water potential in 15 cacao trees and the sap flow density in 12 trees, by canopy condition and by season.

Results: Higher values of solar radiation, air and soil temperature, vapor pressure deficit and lower relative humidity were recorded under OC compared to CC, in both seasons. Differences in soil water potential between 10 and 60 cm depth in CC were recorded during the dry season. There was a lower sap flow density and daily water use in OC. The leaf water potential was similar between canopy conditions, in both seasons.

Conclusions: Changes in canopy coverage significantly modify the microclimate of the crop area, a less stressful environment being generated under closed canopy conditions, influencing the sap flow density of cacao trees.


Download data is not yet available.
Effect of canopy management in the water status of cacao (<em>Theobroma cacao</em>) and the microclimate within the crop area


Abdulai I, Jassogne L, Graefe S, Asare R, Van Asten P, Läderach P, Vaast P. 2018. Characterization of cocoa production, income diversification and shade tree management along a climate gradient in Ghana. PLOS ONE 13:1-18. DOI: https://doi.org/10.1371/journal.pone.0195777

Almeida J, Herrera A, Tezara W. 2018. Phenotypic plasticity to photon flux density of physiological, anatomical and growth traits in a modern criollo cocoa clone. Physiologia Plantarum 166: 821-832. DOI: https://doi.org/10.1111/ppl.12840

Ávila-Lovera E, Coronel I, Jaimez R, Urich R, Pereyra G, Aranque O, Chacón I, Tezara W. 2016. Ecophysiological traits of adult trees of criollo cocoa cultivars (Theobroma cacao L.) from a germplasm bank in Venezuela. Experimental Agriculture 52: 137-156. DOI: https://doi.org/10.1017/S0014479714000593

Babic V, Krstic M, Govedar Z, Todoric J, Vukovic N, Milosevic Z. 2015. Temperature and other microclimate conditions in the oak forests on Fruska Gora (Serbia). Thermal Science 19: 415-425. DOI: https://doi.org/10.2298/TSCI150430116B

Balasimha D, Daniel E, Bhat PG. 1991. Influence of environmental factors on photosynthesis in cocoa trees. Agricultural and Forest Meteorology 55: 15-1. DOI: https://doi.org/10.1016/0168-1923(91)90019-M

Bermúdez-Florez LN, Cartagena-Valenzuela JR, Ramírez-Builes VH. 2018. Soil humidity and evapotranspiration under three coffee (Coffea arabica L.) planting densities at Naranjal experimental station (Chinchiná, Caldas, Colombia). Acta Agronomica 67: 402-413. DOI: http://dx.doi.org/10.15446/acag.v67n3.67377

Brien JJO, Oberbauer SF, Clark DB. 2004. Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest. Plant, Cell & Environment 27: 551-567. DOI: https://doi.org/10.1111/j.1365-3040.2003.01160.x

Carr MK, Lockwoods G. 2011. The water relations and irrigation requirements of cocoa (Theobroma cacao L.): a review. Experimental Agriculture 47: 653-676. DOI: https://doi.org/10.1017/S0014479711000421

Chang X, Zhao W, He Z. 2014. Radial pattern of sap flow and response to microclimate and soil moisture in Qinghai spruce (Picea crassifolia) in the upper Heihe River Basin of arid northwestern China. Agricultural and Forest Meteorology 187: 14-21. DOI: https://doi.org/10.1016/j.agrformet.2013.11.004

Clearwater MJ, Meinzer FC, Andrade JL, Goldstein G, Holbrook NM. 1999. Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiology 19: 681-687. DOI: https://doi.org/10.1093/treephys/19.10.681

CONAGUA [Comisión nacional del agua]. 2018. Datos climáticos del Servicio Meteorológico Nacional, 2018. http://smn.cna.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias (accessed January 4, 2019).

Delgado V. 1996. Sombra y nutrición. In: López P, Delgado N, Azpeitia M, eds. El Cacao Theobroma cacao L. en Tabasco. pp. 121-146. Tabasco, México: Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias (INIFAP) - Centro de Investigación Regional del Golfo (CIRGOC).

FAO [Food and Agriculture Organization]. 2006. Evapotranspiración del cultivo: Guías para la determinación de los requerimientos de agua de los cultivos. FAO. ISBN 92-5-304219-2.

FAOSTAT [Food and Agriculture Organization of Statistical Databases]. 2019. Food and agriculture data. http://www.fao.org/faostat/en/#home (accesed January 3, 2019).

García LJ, Moreno FP. 2016. Respuestas fisiológicas de Theobroma cacao L. en etapa de vivero a la disponibilidad de agua en el suelo. Acta Agronomica 65: 44-50. DOI: https://doi.org/10.15446/acag.v65n1.48161

Geris J, Tetzlaff D, McDonnell JJ, Soulsby C. 2017. Spatial and temporal patterns of soil water storage and vegetation water use in humid northern catchments. Science of the Total Environment 595: 486-493. DOI: https://doi.org/10.1016/j.scitotenv.2017.03.275

Gidoin C, Avelino J, Deheuvels O, Cilas C, Bieng AN. 2014. Shade tree spatial structure and pod production explain frosty pod rot intensity in cacao agroforests, Costa Rica. Phytopathology 104: 275-281. DOI: https://doi.org/10.1094/PHYTO-07-13-0216-R

Granier A. 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology 3: 309-320. DOI: https://doi.org/10.1093/treephys/3.4.309

Hasselquist NJ, Benegas L, Roupsard O, Malmer A, Ilstedt U. 2018. Canopy cover effects on local soil water dynamics in a tropical agroforestry system: Evaporation drives soil water isotopic enrichment. Hydrological Processes 32: 1-11. DOI: https://doi.org/10.1002/hyp.11482

Hernández-Gómez E, Hérnandez-Morales J, Avedaño-Arrazate H, López-Guillen G, Garrido-Ramírez R, Romero-Nápoles J, Nava-Díaz C. 2015. Factores socioeconómicos y parasitológicos que limitan la producción del cacao en Chiapas, México. Revista Mexicana de Fitopatología 33: 232-246.

INEGI [Instituto Nacional de Estadística y Geografía]. 2018. Metadatos-clima. <https://www.inegi.org.mx/app/mapa/espacioydatos/> (accesed September 6, 2018).

Köhler M, Dierick D, Schwendenmann L, Hölscher D. 2009. Water use characteristics of cacao and Gliricidia trees in an agroforest in Central Sulawesi, Indonesia. Ecohydrology 2: 520-529. DOI: https://doi.org/10.1002/eco.67

Köhler M, Hanf A, Barus H, Hendrayanto, Hölscher D. 2014. Cacao trees under different shade tree shelter: effects on water use. Agroforestry Systems 88: 63-73. DOI: https://doi.org/10.1007/s10457-013-9656-3

Köhler M, Schwendenmann L, Hölscher D. 2010. Throughfall reduction in a cacao agroforest: tree water use and soil water budgeting. Agricultural and Forest Meteorology 150: 1079-1089. DOI: https://doi.org/10.1016/j.agrformet.2010.04.005

Li W, Yu T, Li X, Zhao C. 2016. Sap flow characteristics and their response to environmental variables in a desert riparian forest along lower Heihe River Basin, Northwest China. Environmental Monitoring and Assessment 2016: 188-561. DOI: https://doi.org/10.1007/s10661-016-5570-2

Lin BB. 2007. Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agricultural and Forest Meteorology 144: 85-94. DOI: https://doi.org/10.1016/j.agrformet.2006.12.009

López-Baez O, Ramírez-González S, Espinosa-Zaragoza S, Villarreal-Fuentes J, Wong-Villareal A. 2015. Diversidad vegetal y sustentabilidad del sistema agroforestal de cacao en la región de la selva de Chiapas, México. Revista Iberoamericana de Ciencias 2:55-63.

Minorta-Cely V, Ordoñez-Espinosa CM. 2015. Diversidad florística en arreglos agroforestales asociados a cacao (Theobroma cacao), de cuatro municipios del sur Colombiano. Revista Agropecuaria y Agroindustrial La Angostura 2:80-87.

Miyaji K, Da Silva WS, Alvim PDT. 1997. Productivity of leaves of a tropical tree, Theobroma cacao, grown under shading, in relation to leaf age and light conditions within the canopy. New Phytologist 137: 463-472. DOI: https://doi.org/10.1046/j.1469-8137.1997.00841.x

Moser G, Leuschner C, Hertel D, Hölscher D, Köhler M, Leitner D, Michalzik B, Prihastanti E, Tjitrosemito S, Schwendenmann L. 2010. Response of cocoa trees (Theobroma cacao) to a 13-month desiccation period in Sulawesi, Indonesia. Agroforestry Systems 79: 171-187. DOI: https://doi.org/10.1007/s10457-010-9303-1

Niether W, Armengot L, Andres C, Schneider M, Gerold G. 2018. Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Annals of Forest Science 2018: 75-38. DOI: https://doi.org/10.1007/s13595-018-0723-9

Nobel PS. 2009. Physicochemical and Environmental Plant Physiology. California, USA: Elsevier/Academic Press. ISBN: 978-0-12-374143-1

Ortuño MF, García-Orrellana Y, Conejero W, Ruiz-Sánchez MC, Mounzer O, Alarcón JJ, Torrecillas A. 2006. Relationships between climatic variables and sap flow, stem water potential and maximum daily trunk shrinkage in lemon trees. Plant and Soil 279: 229-242. DOI: https://doi.org/10.1007/s11104-005-1302-z

Pacheco P, Aguilar-Støen M, Börner J, Etter A, Putzel L, Diaz M del CV. 2011. Landscape transformation in tropical Latin America: assessing trends and policy implications for REDD+. Forests 2: 1-29. DOI: https://doi.org/10.3390/f2010001

Palma-López D, Cisneros DJ, Moreno CE, Rincón RJ. 2016. Suelos de Tabasco: Su uso y manejo sustentable. Tabasco, México: Colegio de Postgraduados. ISBN: 968-839-552-8

Pinheiro MP, Filho JDO, França S, Amorim AM, Mielke MS. 2013. Annual variation in canopy openness, air temperature and humidity in the understory of three forested sites in Southern Bahia state, Brazil. Ciência Florestal 23: 107-116. DOI: http://dx.doi.org/10.5902/198050988445

Rada F, Jaimez RE, García-Núñez C, Azócar A, Ramírez ME. 2005. Relaciones hídricas e intercambio de gases en Theobroma cacao var. Guasare bajo períodos de déficit hídrico. Revista de la Facultad de Agronomía - LUZ 22: 112-120.

Reyes-García C, Andrade JL, Simá JL, Us-Santamaría R, Jackson PC. 2012. Sapwood to heartwood ratio affects whole-tree water use in dry forest legume and non-legume trees. Trees 26: 1317-1330. DOI: https://doi.org/10.1007/s00468-012-0708-5

R Core Team. 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org (accesed December 2018).

Rucks L, García F, Kaplán A, Ponce J. Hill M. 2004. Propiedades Físicas del Suelo. Montevideo, Uruguay: Universidad de la República.

Santos IC, Almeida A-AF, Anhert D, Conceição AS, Pirovani CP, Pires JL, Valle RR, Baligar VC. 2014. Molecular, physiological and biochemical responses of Theobroma cacao L. genotypes to soil water deficit. PLoS One 9: e115746. DOI: https://doi.org/10.1371/journal.pone.0115746

Soto PL, Jiménez FG, Lerner MT. 2008. Diseño de sistemas agroforestales para la producción y la conservación. Chiapas, México: El Colegio de la Frontera Sur. ISBN: 9786077637028

Tezara W, Urich R, Jaimez R, Coronel I, Aranque Os, Azórcar C, Chacón I. 2016. Does criollo cocoa have the same ecophysiological characteristics as forastero? Botanical Sciences 94: 563-574. DOI: http://dx.doi.org/10.17129/botsci.552

Valenzuela F, Alcudia A. 2010. Manejo, producción y moniliasis en cacaotales con sombra mono- y multi- específica en la Chontalpa. Instituto Tecnológico de la Zona Olmeca, Tabasco, México. Engineering Thesis. 113 pp.

Zavala-Cruz J, Jiménez RR, Palma-López DJ, Bautista ZF, Gavi RF. 2016. Paisajes geomorfológicos: base para el levantamiento de suelo en Tabasco, México. Ecosistemas y Recursos Agropecuarios 3: 161-171. DOI: http://dx.doi.org/10.19136/era.a3n8.643

Zhang G, Chen B, Nie J, Lin M. 2008. Sap flow of Castanopsis jianfengensis and its relationship with environmental factors in a tropical montane rainforest. Frontiers of Forestry in China 3: 200-205. DOI: https://doi.org/10.1007/s11461-008-0025-8

Zhao CY, Si JH, Feng Q, Yu TF, Li P Du. 2017. Comparative study of daytime and nighttime sap flow of Populus euphratica. Plant Growth Regulation 82: 353-362. DOI: https://doi.org/10.1007/s10725-017-0263-6

Zweifel R, Steppe K, Sterck FJ. 2007. Stomatal regulation by microclimate and tree water relations: Interpreting ecophysiological field data with a hydraulic plant model. Journal of Experimental Botany 58: 2113-2131. DOI: https://doi.org/10.1093/jxb/erm050

How to Cite
Jiménez-PérezA., Cach-PérezM. J., Valdez-HernándezM., & de la Rosa-ManzanoE. (2019). Effect of canopy management in the water status of cacao (<em>Theobroma cacao</em&gt;) and the microclimate within the crop area. Botanical Sciences, 97(4), 701-710. https://doi.org/10.17129/botsci.2256