Variación de caracteres epidérmico-foliares de Agave salmiana subsp. salmiana (Asparagaceae) en el centro de México

  • Lorena Chávez-Güitrón Universidad Nacional Autónoma de México
  • Florencia del C. Salinas-Pérez Universidad Tecnológica de Tecámac, Estado de México
  • Edgar A. Pérez-Salinas Universidad Tecnológica de Tecámac, Estado de México
  • Javier Caballero Instituto de Biología, Universidad Nacional Autónoma de México
  • Alejandro Vallejo-Zamora Instituto de Biología, Universidad Nacional Autónoma de México
  • Estela Sandoval-Zapotitla Instituto de Biología, Universidad Nacional Autónoma de México
Keywords: Agave salmiana, epidermis, leaf, multivariate analysis


Background: Agave salmiana has two subspecies with great morphological variation. Agave salmiana subsp. salmiana is native to arid areas of Central and Southern Mexico, with food, cultural and economic importance, but the level of phenotypic variation of its epidermal characteristics is unknown.

Question: What is the degree of anatomical variation intra and interpopulation in epidermal characters, particularly in the margin, the intermediate region and middle leaf?

Methods: Epidermis samples were compared, from three regions of leaves, from five individuals in three localities of the State of Mexico. These were mounted as semi-permanent preparations; fourteen parameters were statistically compared in the three levels assigned.

Results: There were significant differences between the regions of the leaf by 57 %; while among individuals of each locality there is 21, 36 and 71 % respectively, and among localities 71 %. Phenotypic plasticity interval goes from 14 to 100 %, the lowest among the regions of the leaves and the largest on Teotihuacan. The relationship of this variation with the origin of the plants can be inferred. Multivariate analysis demonstrate that six epidermal characteristics significantly distinguish individuals from the three towns, particularly those from Tecamac.

Conclusion: The variation in the epidermal characters is significant to both intra and interpopulation level.  Except among three regions of leaf, phenotypic plasticity is high among individuals of each location and the three towns.


Download data is not yet available.

Author Biography

Estela Sandoval-Zapotitla, Instituto de Biología, Universidad Nacional Autónoma de México

Dra. en Ciencias Biológicas.

Especialidad en Anatomía Vegetal sistemática en Angiospermas

Variación de caracteres epidérmico-foliares de <em>Agave salmiana</em> subsp. <em>salmiana</em> (Asparagaceae) en el centro de México


Aasaman K, Sober A, Rahi M. 2001. Leaf anatomical characteristic associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Australian Journal of Plant Physiology 28: 765-774. DOI:

Ackerly D, Knight CA, Weiss S, Barton K, Starmer K. 2002. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia. 130: 449-457. DOI:

Aguilar-Juárez B, Enriquez-del Valle JR, Rodríguez-Ortiz, Granados-Sánchez D, Martínez-Cerecero B 2014. El estado actual de Agave salmiana y Agave mapisaga del Valle de México. Revista Mexicana de Agrosistemas 2: 106-120-93.

Álvarez A. 1990. El complejo estomático en la familia Agavaceae II. Epidermis adulta. Feddes Repertorium 101: 113- 134. DOI:

Balaguer L, Martínez-Ferrari E, Valladares F, Pérez-Corona ME, Baquedano FJ, Castillo FJ. Manrique E. 2001. Population divergence in the plasticity of the response of Quercus coccifera to the light environment. Functional Ecology 15: 124-135. DOI:

Barrientos-Priego A, Borys M, Trejo C, López-López L. 2003. Índice y densidad estomática foliar en plántulas de tres razas de aguacatero. Revista Fitotecnia Mexicana 26: 285-290.

Blunden G, Yi Y, Jewers K. 1973. The comparative leaf anatomy of Agave, Beschorneria, Doryanthes and Furcraea species (Asparagaceae: Agaveae). Botanical Journal of the Linnean Society 66: 157-179. DOI:

Branco-Camargo MA, Marenco RA. 2012. Growth, leaf and stomatal traits of Crabwood (Carapa guianensis Aubl.) in Central Amazonia. Revista Árvore, Vicosa-MG 36: 7-16.

Bruschi P, Grossoni P, Busotti F, 2003. Within and among-tree variation in leaf morphology of Quercus petraea (Matt) Liebl. Natural Populations Trees 17: 164-72. DOI:

García-Herrera EJ, Méndez-Gallegos SJ, Talavera-Magaña D. 2010. El género Agave spp. en México: principales usos de importancia socioeconómica y agroecológica. Revista Salud Pública y Nutrición,5: 109-129.

García-Mendoza AJ. 1998 Con sabor a Maguey. Guía de la Colección Nacional de Agavaceas y Nolináceas del Jardín Botánico, Ciudad de México: Universidad Nacional Autónoma de México. ISBN: 968-7365-07-2

García-Mendoza AJ. 2007. Los agaves de México. Ciencias 87: 14-23.

García-Mendoza AJ. 2011. Flora del valle de Tehuacán Cuicatlán, Fascículo 88. Universidad Nacional Autónoma de México. ISBN 978-607-02-2566-6

Gasson P. 1981. Epidermal anatomy of some North American globular cacti. The Cactus and Succulent Journal of Great Britain 43: 101-108.

Gentry HS, Sauck, J. 1978. Research Gate. Obtenido de The stomatal complex in Agave. Groups: deserticolae, campaniflorae y umbelliflorae. Proceedings of the California Academy of Sciences. 41: 371-87.

Gentry HS. 1982. Agaves of Continental North America. Tucson, AZ: The University of Arizona Press ISBN 978-0-8165-2395-5

Granados SD. 1993. Los Agaves en México. México: Universidad Autónoma Chapingo. ISBN: 968-884-225-7

Grego-Valencia D, Terrazas T, Vázquez-Sánchez M, Arias S. 2014. Ferocactus (Cactaceae) epidermis: its systematic value. Journal of the Torrey Botanical Society 141: 313-325. DOI:

Guerfel M, Baccouri O, Boujnah, D, Chaibi W, Zarrouk M. 2009. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Scientia Horticulturae 119: 257-263. DOI:

Hall MC, Dworkin I, Ungerer MC, Purugganan M. 2007. Genetics of microenvironmental canalization in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 104: 13717- 13722. DOI:

Hernández-Valencia R, López-Franco R, Benavides-Mendoza A. 2003. Micromorphology of the foliar epidermis of Agave tequilana Weber. Agrofaz 3: 387-396

Hernández-Juárez A. 2008. Caracterización morfológica, anatómica e histológica del sotol (Dasylirion cedrosanum Trel.) BSc. Thesis. Universidad Autónoma Agraria Antonio Narro.

Hovenden MJ, Vander-Schoor JK. 2006. The response of leaf morphology to irradiance depends on altitude of origin in Nothofagus cunninghamii. New Phytologist 169: 291-297. DOI:

IBM. 2015. IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp. SAS Institute Inc.

Illsey GC, Gómez AT, Rivera MG, Morales MM, García BJ, Ojeda SA, Calzada RM, Mancilla SN. 2005. Conservación in situ y manejo campesino de magueyes mezcaleros. Grupo de Estudios Ambientales AC. Ciudad de México: Informe final SNIB-CONABIO proyecto No. V028.

Jiménez-Noriega P. Terrazas T. López-Mata L. Sánchez-González A. Vibrans H. 2017. Anatomical variation of five plant along an elevation gradient in Mexico City basin within the Trans-Mexican Volcanic Belt, Mexico. Journal of Mountain Science 14: 2182-2199. DOI:

Jordan WR, Shouse PJ, Blum A, Miller FR, Monk RL. 1984. Environmental Physiology of Sorghum. II. Epicuticular Wax Load and Cuticular Transpiration 1. Crop Science 24: 1168- 1173. DOI:

Kakami V, Reddy K, Zhao D, Mohammed A. 2003. Efectos de radiación ultravioleta-B en algodón (Gossypium hirsutum L.) morfología y anatomía. inglés) Annals of Botany 91: 817-826. DOI:

Koch K, Bhushan B, Barthlott W. 2009. Multifunctional surface structures of plants: An inspiration for biomimetics. Progress in Materials Science 54: 137-178. DOI:

Kürschner W, Stulen I, Wagner F, Kuiper P. 1998. Comparison of palaeobotanical observations with experimental data on the leaf anatomy of durmast oak (Quercus petraea) (Fagaceae) in response to environmental changes. Annals of Botany 81: 657-664. DOI:

Loza-Cornejo S. Terrazas, T. 2003. Epidermal and hypodermal characteristics in North American Cactoideae (Cactaceae). Journal of Plant Research 116: 27-35. DOI:

McDonald P. Fonseca C. Overton J. Westoby M. 2003. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Functional Ecology. 17: 50-57. DOI:

Martínez-Quezada DM, Sandoval-Zapotitla E, Solís-De la Cruz J, Velázquez-Vázquez DE, Herrera-Cabrera EB. 2016. Caracterización anatómica y análisis de variación de epidermis foliar y caulinar entre dos genotipos de Vanilla planifolia Jacks. ex Andrews. Agroproductividad 249: 26-33.

Martínez-Valverde MF. 2019. Variación morfológica en hojas de Guatteria amplifolia (Annonaceae) en México. MSc. Thesis. Universidad Nacional Autónoma de México.

Mauseth JD. 1988. Plant Anatomy. Benjamin/Cummings. Menlo Park, CA. 660 pp. ISBN: 9780805345704.

Mencuccini M. 2003. The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ 26: 163-182.

Moreno LPF. 2009. Respuesta de las plantas al estrés por déficit hídrico. Una revisión. Agronomía Colombiana 27: 179-191.

Nevo E, Pavlek T, Beharav A, Bolshakova MA, Martyn GI, Musatenko LI, Sytnik KM, 2000. Drought and light anatomical adaptative leaf strategies in three woody species caused by microclimatic selection at “Evolution Canyon” Israel. Israel Journal of Plant Sciences 48: 33-46. DOI:

Nilsen ET, Orcutt DM. 1996. Physiology of plants under stress. Abiotic factors. New York: John Wiley and Sons. ISBN-10: 0471031526; ISBN-13: 978-0471031529

Nobel SP. 1988. Environmental Biology of Agaves and Cacti. Cambridge, UK: Cambridge University Press. ISBN: 0-521-54334-7; ISBN-13: 978-0521343220

Olvera SA, San Agustín CLS. 2017. Descripción anatómica foliar del Agave salmiana var. salmiana de la localidad de Teotihuacán. Biotechnology Engineering Thesis. Universidad Tecnológica de Tecámac.

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671-675. DOI:

Reyes HVJ, Hernández JJ, López UJ, Vaquera HH. 2005. Variación morfológica y anatómica en poblaciones mexicanas de Pseudotsuga (Pinaceae). Acta Botánica Mexicana. 70: 47-67. DOI:

Rohlf JF. 1998. NTSYS-pc, Numerical Taxonomy and Multivariate Analysis System. Versión 2.2. User Guide. New York, USA. Applied Biostatistics. Inc. ISBN: 0-925031-31-3

Roth I. 1992. Leaf structure: coastal vegetation and mangroves of Venezuela. Gebüder Bomtraeger, Berlín: Lubrecht & Cramer Ltd. ISBN: 97834431402205

Sánchez-Galindo LM. 2010. Estudio de la morfo estructura de dos variedades mexicanas de agave (Agave angustifolia Haw y Agave tequilana Weber), caracterizadas mediante microscopía óptica, tratamiento digital de imágenes y conceptos de dimensión fractal. Industrial Production Engineering Thesis. Universidad de la Sabana.

Sánchez-Urdaneta AB, Peña-Valdivia CB, Aguirre JR, Trejo C, Cárdenas E. 2004. Efectos del potencial de agua en el crecimiento radical de plántulas de Agave salmiana Otto ex Salm-Dyck. Interciencia 29: 626-631.

Sandoval-Zapotitla E, Rojas A, Guzmán C, Carmona L, Ponce M, León C, Loyola C, Vallejo A, Medina A. 2005. Técnicas Aplicadas al Estudio de la Anatomía Vegetal. Cuadernos del Instituto de Biología 38. Ciudad de México: Instituto de Biología, UNAM. ISBN: 970-32-3131-4; 9789703231317

Sandoval-Zapotitla E, Martínez-Quezada DM, Reyes-Santiago J, Islas-Luna MA, and Rosas U. 2019. Leaf morpho-anatomical diversity in Echeveria gigantea (Crassulaceae). Botanical Sciences. 97: 218-235. DOI:

Sharkey T. 1993. Fotosíntesis. In: Azcon-Bieto BJ, Talón M, eds, Fisiología y Bioquímica Vegetal. España: Editorial Mc Graw-Hill, pp. 81-85. ISBN: 9788448600334

Sosa-del Castillo M, García-Alemán S, Pérez-Hernández Y, Abreu-Cruz E, González-Oramas O. 2014. Caracterización de la lámina foliar de plantas de Agave fourcroydes Lem. Obtenidas por propagación asexual. Biotecnologia Vegetal 14: 37-44.

Stebbins GL, Khush GS. 1961. Variation in the organization of the stomatal complex in the leaf epidermis of monocotyledons and its bearing on their phylogeny. American Journal of Botany 48: 51-59. DOI:

Taiz L, Zeiger E. 2010. Plant Physiology. Sunderland: Sinauer Associates, Inc. ISBN-10: 0878938664; ISBN-13: 978-0878938667

Tichá I. 1982. Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes. Photosynthetica 16: 375-341.

Toral MA, Manríquez R, Navarro-Cerrillo D, Tersi, Naulin. 2010. Características de los estomas, densidad e índice estomático en secuoya (Sequoia sempervirens) y su variación en diferentes plantaciones de Chile. Bosque 31: 157-164. DOI:

Trewavas A. 2003. Aspects of Plant Intelligence. Annals of Botany 92: 1-20. DOI:

Verduzco-Martínez J, Predo-Rojas CI, Mercado-Hernández R. 2008. Caracterización e identificación taxonómica del maguey. Nuevo León, México: VII Simposium-Taller “Producción y Aprovechamiento del Nopal en el Noreste de México”.

Willmer CM, Pallas JE. 1973. A survey of stomatal movements and associated potassium fluxes in the plant kingdom. Canadian Journal of Botany 51: 37-42. DOI:

Willmer CM, Fricker M. 1996. Stomata. London: Chapman and Hall. ISBN-10: 940104256X; ISBN 978-94-011-0579-8

Wilkinson H. 1988. Stomata: In Metcalfe CR, Chalk L, eds. Anatomy of Dicotyledons: Vol 1: Systematic Anatomy of the Leaf and Stem, with a brief History. Oxford, UK: Claredon Press, 97-117. ISBN: 0-19-854253-4

How to Cite
Chávez-Güitrón, L., Salinas-Pérez, F. del C., Pérez-Salinas, E. A., Caballero, J., Vallejo-Zamora, A., & Sandoval-Zapotitla, E. (2019). Variación de caracteres epidérmico-foliares de <em>Agave salmiana</em> subsp. <em>salmiana</em&gt; (Asparagaceae) en el centro de México. Botanical Sciences, 97(4), 711-724.